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ABSTRACT 
We have proposed here two deterministic models of Jatropha Curcas plant and Whitefly that recreate the dynamics of 

cooperation between them where the conveyance of Whitefly on plant follows Poisson distribution.In the first model 

growth rate of the plant is thought to be in logistic form whereas in the second model it is taken as exponential form. 

The attack pattern and the growth of the whitefly are assumed as Holling type II function.The first model outcomes a 

globally stable state and in the second one we discover a globally attracting steady state for some parameter values,and 

a stable limit cycle for some other parameter esteems. It is likewise demonstrated that there exist Hopf bifurcation 

regarding some parameter values. The paper additionally examine the inquiry regarding persistence and permanence 

of the model. It is discovered that the particular growth rate of both the population and attack pattern of the whitefly 

administers the dynamics of both the models. 

 

Keywords:  Jatropha curcas plant, Whitefly (Bemisia tabaci), Random attack , Global stability, Limit cycle and Hopf 

bifurcation investigation.  

 

I. INTRODUCTION 

 
With the upgradation of human civilisation the interest for the elective vitality sources is also likewise expanding. 

Among the potential methods for creating vitality in a situation invitingway,the creation of biofuels is getting generally 

well known. Jatropha curcas is such a significant plant the seeds of which plant contains 37% oil that can be utilissed 

to obtain a superior nature of biodiesel [8]. The beginning of this plant is tropical zone at first from Mexico and central 

part of the USA and is currently developed overall [6]. The tree is of critical financial significance for its various 

mechanical and medicinal use.  

 

Jatropha curcas is a semi-evergreen little bush with huge green to light green leaves. Normally it develops between 

(3 − 5)meter in tallness yet accomplishes a stature upto (8 − 10)meter under good condition. It is normally known 

as physic or purging nut. It is a multipurpose and drought resistant crop which is developed in marginal grounds with 

lesser input. The tree can be developed in dry and barren conditions and can be developed likewise in rough,sandy 

and salty soils. It has low plantation cost. It developes rapidly and lives delivering seeds for 50 years. Yet such a 

significant plant is influenced by the mosaic virus (begomovirus).  

 

Mosaic virus is one kind of plant virus that causes the leaves of plants with a spotted and speckled look. They move 

oftentimes in nature. The indications are serious mosaic, mottling, blistering of leaves, yellowing of leaves, decreased 

leaf size, hindering of infected plants. It basically attacks its fruits extensively decreasing the creation and nature of 

seeds. The mosaic virus spreading chiefly relies upon the vector whitefly [2][3] . The number of inhabitants in whitefly 

is constrained by temperature and rainfall. Heavy rainfall makes an obstacle for the develoment of whiteflies [1]. In 

this ailment the mosaic virus passes from an infected whitefly to a susceptible plant and the other way around. The 

spread of the virus is profoundly depends on the plant thickness. A solitary whitefly is satisfactory to contaminate the 

host plants however transmission of the ailment spread when various infected whiteflies feed on the host plants through 

massive flux of saliva. Accordingly have host plant (Jatropha Curcas) faces leaf harm and sap seepage because of such 

feeding. Whiteflies reproduces very quickly [7] , if once they get traditional on any aspect of the plants they will 

willfully roam and try to attempt to assault some other immediate vegetation [5][10]. Ordinarily they need 3 hours 

feeding time to secure the infection and a latent phase of 8 hours. It requires 10 minutes time to taint the youthful 
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leaves. Indications appear to be showed up after a latent period of 3-5 weeks. Also the infected whiteflies infuse the 

infection to the plant with the disease being almost certain if more insects assault the same plant. After obtaining of 

the mosaic virus adult whiteflies can infect the host plants within 48 hours. The motivation behind this study is to 

show the dynamics because of different growth function of the plant population and the effect of random attack pattern 

of whitefly on the plant [9] . A PC result shows the behavior of the solutions for various parameter esteems.  

 

II. STATEMENT OF THE MODEL 
 

In our model we have thought that v whiteflies are distributed over x plants so that some plants are without whitefly 

and others have 1,2,............,i whiteflies per plant. Consequently we have  

∑

𝑥

𝑖=1

𝑖 = 𝑣 

 

we here accepted that the whiteflies are conveyed over x plants as indicated by a probability distribution so that the 

extent of plants with i whiteflies is p(i). So the quantity of plants with i whiteflies is p(i)x. If the intrinsic plant loss-

rate per whitefly is f then the loss-rate of plants with i whiteflies will be fip(i)x. Thus the total loss-rate of plants is  

  

𝑓𝑥 ∑

∞

𝑖=0

𝑖𝑝(𝑖) 

. 

Here ∑ 𝑖𝑝(𝑖) is the mean number of whitefly per plant and v/x is the expectation of i. so the loss rate due to whitefly 

consumption is fv. The loss of whiteflies occur in the following ways. 

e-natural mortality of whitefly. 

b=natural mortality of the host plant. 

f=by their killing the host plant. 

This self induced mortality occurs at a rate 𝑓𝑖2𝑝(𝑖)𝑥. So for the whole plant population it is   

𝑓𝑥 ∑

∞

𝑖=0

𝑖2𝑝(𝑖) 

The term ∑ 𝑖2𝑝(𝑖) is the expectation of 𝑖2. We have chosen here the poisson distribution which ecologically reflects 

random attack pattern. Here whitefly-inflicted losses through the plant death are 𝑓𝑥𝐸(𝑖2). 

 

For poisson distribution we have 𝐸(𝑖2) =
𝑣

𝑥
+ (

𝑣

𝑥
)2 [9]. We have picked two different types of growth function of the 

plant(Jatropha curcas) population. In the first model we have picked the growth of the plant population in logistic 

form and in the second model exponential growth is accepted. In both the model the growth of whitefly and the attack 

pattern of the whitefly is accepted as holling type II function. Here r is growth rate of the whitefly,k is the carrying 

capacity. 

 

Based on the above suppositions the first model takes the structure, 

 

III. MODEL 1 
  

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥(1 −

𝑥

𝑘
) −

𝑎𝑥𝑣

𝑘+𝑥
 

 
𝑑𝑣

𝑑𝑡
= 𝑣[

𝑐𝑥

𝑘+𝑥
− (𝑒 + 𝑏 + 𝑓) −

𝑓𝑣

𝑥
]                          (1) 

 

with the initial conditions, 

𝑥(0) = 𝑥0 > 0, 𝑣(0) = 𝑣0 > 0 

Here 𝑥0 is the initial plant population density and 𝑣0 is the initial whitefly density. 

For mathematical convenience we consider the following transformation, 
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𝑥 = 𝑘𝑋, 𝑣 =
𝑘𝑐𝑣

𝑓
, 𝑡 =

𝜏

𝑐
. 

The transformed equation is, 

 

 
𝑑𝑋

𝑑𝜏
= 𝛼𝑋(1 − 𝑋) −

𝛽𝑋𝑉

1+𝑋
 

 
𝑑𝑉

𝑑𝜏
= 𝑉[

𝑋

1+𝑋
− 𝛾 −

𝑉

𝑋
] 

 

where 𝛼 =
𝑟

𝑐
, 𝛽 =

𝑎

𝑓
,𝛾 =

𝑏+𝑒+𝑓

𝑐
.                               (2) 

 

3.1 Solution properties 

  

3.1.1  lemma1 

The solution of (2) are positive. 

Proof: 

since 𝑥(0) = 𝑥0 > 0 and 𝑣(0) = 𝑣0 > 0, we have 𝑋(0) = 𝑋0 > 0 and 𝑉(0) = 𝑉0 > 0. Suppose 𝑋(𝜏) is not positive 

for all 𝜏 ≥ 0. Since 𝑋0 > 0 then there exist 𝜏0 with 𝑋(𝜏0) = 0 and 𝑋(𝜏) > 0 for 0 ≤ 𝜏 ≤ 𝜏0. For 0 ≤ 𝜏 ≤ 𝜏0  

�̇�(𝜏)

𝑋(𝜏)
= 𝛼(1 − 𝑋) −

𝛽𝑉

1 + 𝑋
> −𝛼𝑋 −

𝛽𝑉

1 + 𝑋
 

𝑋(𝜏0) > 𝑋0𝑒𝑥𝑝[− ∫
𝜏0

0

𝑉(𝜂)/𝑋(𝜂)𝑑𝜂] > 0 

This is a contradiction and hence 𝑋(𝜏) is positive for all 𝜏 ≥ 0. Similarly it can be shown that 𝑉(𝜏) is also positive 

for all 𝜏 ≥ 0. 

 

3.2  Equilibria 

The equilibrium points are obtained by setting 
𝑑𝑋

𝑑𝜏
= 0 and 

𝑑𝑉

𝑑𝜏
= 0 and solving the equations  

𝛼(1 − 𝑋) −
𝛽𝑉

1+𝑋
= 0 and 

𝑋

1+𝑋
− 𝛾 −

𝑉

𝑋
= 0. 

We have seen that there are two equilibrium points i.e. 𝐸1(𝑋, 0) = (1,0) which is the whitefly free equilibrium and 

𝐸2(𝑋∗, 𝑉∗) is the interior equilibrium. From the first equation we obtain 𝑉∗ as a function of 𝑋∗, as follows. 

𝑉∗ =
𝛼(1 − 𝑋)(1 + 𝑋)

𝛽
 

Clearly 𝑉∗ is feasible as 𝑋∗ ≤ 1. Substituting this in the second equation we have a cubic equation as, 

𝛼𝑋3 + (𝛽 − 𝛽𝛾 + 𝛼)𝑋2 − (𝛼 + 𝛽𝛾)𝑋 − 𝛼 = 0 

Since there is atleast one change of sign therefore by Descartes’ rule of sign there exist atleast one positive 𝑋∗. 

Therefore (𝑋∗, 𝑉∗) exists. 

 

3.3  Stability 

The equilibrium 𝐸1 is stable if 𝛾 > 0.5 or saddle if 𝛾 < 0.5 as its eigen values are -𝛼 and 0.5 − 𝛾. 

The characteristic equation for 𝐸2(𝑋∗, 𝑉∗) is a quadratic equation which is as follows, 

𝜆2 + 𝜆(−𝛼 + 2𝛼𝑋∗ +
𝛽𝑉∗

(1 + 𝑋∗)2
+

𝑉∗

𝑋∗
) −

𝛼𝑉∗

𝑋∗
+ 2𝛼𝑉∗ +

𝛽𝑉∗2

𝑋∗(1 + 𝑋∗)2
+

𝛼𝑋∗(1 − 𝑋∗)

(1 + 𝑋∗)2
+

𝛽𝑉∗2

𝑋∗(1 + 𝑋∗)
= 0 

Which can be written as 

𝜆2 + 𝐴𝜆 + 𝐵 = 0 
Where, 

𝐴 =
2𝛼𝑋∗2

(1 + 𝑋∗)
+

𝑉∗

𝑋∗
> 0 

and 
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𝐵 =
𝛼2(1 − 𝑋∗2)

𝛽
+

𝛼2(1 − 𝑋∗)2

𝛽𝑋∗
+

𝛼𝑋∗(1 − 𝑋∗)

(1 + 𝑋∗)2
> 0 

Since 𝐴 > 0,𝐵 > 0, 𝐸2(𝑋∗, 𝑉∗) is locally asymptotically stable.  

 

3.4 Global stability 

 Let us consider 𝐻(𝑋, 𝑉) =
1

𝑋𝑉
  

then 𝐻 > 0 as 𝑋 > 0 and 𝑉 > 0 

Let ℎ1(𝑋, 𝑉) = 𝛼𝑋(1 − 𝑋) −
𝛽𝑋𝑉

1+𝑋
 

and ℎ2(𝑋, 𝑉) = 𝑉[
𝑋

(1+𝑋)
− 𝛾 −

𝑉

𝑋
] 

therefore ∇(𝑋, 𝑉) =
𝜕(ℎ1𝐻)

𝜕𝑋
+

𝜕(ℎ2𝐻)

𝜕𝑉
  

=
𝜕

𝛼(1−𝑋)

𝑉
−

𝛽

(1+𝑋)

𝜕𝑋
+

𝜕
1

(1+𝑋)
−

𝛾

𝑋
−

𝑉

𝑋2

𝜕𝑉
 

=
−2𝛽𝑋

(1 + 𝑋)2(1 − 𝑋)
−

1

𝑋2
< 0 

Subsequently by Bendixson-Dulac criteria 𝐸2 is globally asymptotically stable in the positive XV-plane [4] . 

 

IV. PERSISTENCE AND PERMANENCE OF THE SYSTEM 
 

From the biological point of view persistence impliess that all the populations are available and none of them will get 

terminated. Persistence and permanence is consistent to settle the inquiries of endurance and elimination of n-species 

whose growth equations are administered by the differential equations  

  

              �̇�𝑖 = 𝑥𝑖𝑓𝑖(𝑥1, 𝑥2, . . . . . . . . . . . , 𝑥𝑛)                       (3) 

 

The thought of persistence (weak and strong) came to the light by Freedman and Waltman. The system (2) is supposed 

to be weakly persistent if 𝑙𝑖𝑚𝑠𝑢𝑝𝑥𝑖(𝑡) > 0 for all orbits in 𝑖𝑛𝑡ℝ+
𝑛and strongly persistent if 𝑙𝑖𝑚𝑖𝑛𝑓𝑥𝑖(𝑡) > 0.  

 

Again system (2) is said to be permanent if there exists a compact set 𝐵 ⊂ 𝑖𝑛𝑡ℝ+
𝑛  such that all orbits in 𝑖𝑛𝑡ℝ+

𝑛  end up 

in B. The system is uniformly persistence if there exist 𝛿 > 0 such that for each compact set 𝑥𝑖 , 𝑙𝑖𝑚𝑖𝑛𝑓𝑥𝑖(𝑡) ≥ 𝛿 >
0 for all (𝑥1(𝑡), 𝑥2(𝑡), . . . . . . . . . . , 𝑥𝑛(𝑡)) = 𝑋(𝑡) ∈ 𝑖𝑛𝑡ℝ+

𝑛 . We now discuss the concept of saturated equilibria. An 

equilibrium fixed point 𝑥∗ is said to be saturated equilibrium if 𝑥𝑖
∗ = 0 then 𝑓𝑖(𝑥1

∗, 𝑥2
∗, . . . . . . . . . . . , 𝑥𝑛

∗ ) ≤ 0. With the 

concept of saturated equilibria and by the method of average Lyapunov function we have the following theorem for 

permanent coexistence of both the species of the system [4].  

  

4.1 Theorem 

The system is permanent iff 𝛾 <
1

2
. 

Proof: 

The index theorem states that the system with dissipativeness suspicion has atleast one saturated equilibrium. If all 

these saturated equilibria are regular, then the sum of their indices is +1. From the lemma 1 the system is dissipative 

and thus there exists atleast one saturated equilibrium and the sum of their indices is +1 if they are regular. The 

permanence of the system implies that none of the boundary fixed points are saturated. Hence the interior fixed point 

exists and must be saturated. Hence all the eigen values are negative or have negative real part,which is conceivable 

if 𝛾 <
1

2
.  

 

We now build the average Lyapunov function to prove the sufficient condition. In our model, we consider the average 

Lyapunov function as 𝜎(𝑋) = 𝑋𝑟1 . 𝑉𝑟2  where 𝑟𝑖 > 0 i=1,2. 
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 Let,                  𝜓(𝑋) =
�̇�(𝑋)

𝜎(𝑋)
 

= 𝑟1

�̇�

𝑋
+ 𝑟2

�̇�

𝑉
 

                                  = 𝑟1[𝛼(1 − 𝑋) −
𝛽𝑉

(1+𝑋)
] + 𝑟2[

𝑋

(1+𝑋)
− 𝛾 −

𝑉

𝑋
] 

If 𝜓(𝑋) > 0 for the 𝜔 -limit sets of trajectories initiated in ℝ+
3 , then the trajectories more away from the boundary 

and the system (1) is permanent. It is evident that there is no periodic trajectory. Hence if there exist 𝑟1 > 0 such that 

Ψ(𝐸1) > 0, then (1) is permanent. 

Therefore for 𝐸1(1,0), 𝜓(𝑋) = 𝑟2(
1

2
− 𝛾) > 0 

The inequality is evidently satisfied for atleast one positive 𝑟 = (𝑟1, 𝑟2) if 𝛾 <
1

2
. Henceforth the system is uniformly 

persistent(or permanent) if 𝛾 <
1

2
. This completes the proof of the theorem. 

 

V. MODEL 2 
 

In this model keeping all the things same as model 1 we have taken the exponential growth of the plant (Jatropha 

curcas). Now our model 2 is as follows:  

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 −

𝑎𝑥𝑣

𝑘+𝑥
 

 
𝑑𝑣

𝑑𝑡
= 𝑣[

𝑐𝑥

𝑘+𝑥
− (𝑒 + 𝑏 + 𝑓) −

𝑓𝑣

𝑥
]                        (4) 

 

For convenience we have chosen the dimensionless form by taking, 

𝑥 = 𝑘𝑋,𝑣 =
𝑘𝑐

𝑎
𝑉,𝑡 =

𝜏

𝑐
 

The dimension less form becomes: 

 

 
𝑑𝑋

𝑑𝜏
= 𝛼𝑋 −

𝑋𝑉

1+𝑋
 

 
𝑑𝑉

𝑑𝜏
= 𝑉[

𝑋

1+𝑋
− 𝛽 −

𝛾𝑉

𝑋
]                                (5) 

 

where 𝛼 =
𝑟

𝑐
, 𝛽 =

𝑒+𝑓

𝑐
,𝛾 =

𝑓

𝑎
. 

 

5.1  Equilibria 

The equilibrium points can be obtained by setting 
𝑑𝑋

𝑑𝜏
= 0, and 

𝑑𝑉

𝑑𝜏
= 0 

we here observed that there is just a single equilibrium point 𝐸(𝑋∗, 𝑉∗) i.e. the interior equilibrium point. 

From the first equation of (5) we get 𝑉∗ in terms of 𝑋∗ which is as follows: 

𝑉∗ = 𝛼(1 + 𝑋∗) 

substituting this in the second equation 𝑋∗ is obtained as: 

 

𝑋∗ =
(𝛽 + 2𝛼𝛾) ± √(𝛽 + 2𝛼𝛾)2 + 4(1 − 𝛽 − 𝛼𝛾)𝛼𝛾

2(1 − 𝛽 − 𝛼𝛾)
 

So 𝑋∗ exists if 𝛽 + 𝛼𝛾 < 1 

 

5.2  Stability 

The local behavior of the equilibrium point of the system is determined by the real parts of the eigenvalues of the 

Jacobian matrix at that point. 

The characteristic equation is given by: 

𝜆2 + 𝜆(−
𝛼𝑋∗

1 + 𝑋
+

𝛾𝑉

𝑋
) −

𝛼𝛾𝑉

1 + 𝑋
+

𝛼𝑋

(1 + 𝑋)2
+

𝛾𝑉2

𝑋(1 + 𝑋)
= 0 

 



  
[Das, 7(9): September 2020]                                                                                                  ISSN 2348 – 8034 
DOI: https://doi.org/10.29121/gjesr.v7.i9.2020.2                                              Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

21 

Which can be written as: 

𝜆2 + 𝐴𝜆 + 𝐵 = 0 
 

Where 𝐴 =
𝑋−𝛽−𝛽𝑋−𝛼𝑋

1+𝑋
 

and 𝐵 = −
𝛼𝛾𝑉

1+𝑋
+

𝛼𝑋

(1+𝑋)2 +
𝛾𝑉2

𝑋(1+𝑋)
> 0 

This leads to the following results for 𝐴 > 0 or 𝐴 = 0 or 𝐴 < 0: 

 

5.2.1  Theorem: 

If 𝛽 + 𝛼𝛾 < 1 and 𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ > 0 then 𝐸(𝑋∗, 𝑉∗) is globally asymptotically stable. 

 

Proof:  

If possible let Γ be any periodic orbit around 𝐸(𝑋∗, 𝑉∗) in the positive XV- plane. Then, 

Δ = ∫
Γ

𝑑𝑖𝑣(�̇�, �̇�) 𝑑𝜏 

                                 = ∫
Γ

(𝛼 −
𝑉

(1+𝑋)2 +
𝑋

(1+𝑋)
− 𝛽 −

2𝛾𝑉

𝑋
) 𝑑𝜏 

                                 = ∫
Γ

(
𝛼𝑋

(1+𝑋)
−

𝛾𝑉

𝑋
) 𝑑𝜏 

 

Under the given assumption 𝐸(𝑋∗, 𝑉∗) is locally stable. In this way Δ < 0. The Poincare criteria now suggests that 

the proposed periodic orbit Γ is stable , which leads to a logical inconsistency. Accordingly, there is no periodic orbit 

around 𝐸(𝑋∗, 𝑉∗) in the positive XV plane and thus 𝐸(𝑋∗, 𝑉∗) is a global attractor. This completes the proof of the 

theorem.  

 

5.2.2  Theorem: 

If 𝛽 + 𝛼𝛾 < 1 and 𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ = 0 then the system bifurcates into small amplitude periodic solutions near 

𝐸(𝑋∗, 𝑉∗). 

Proof:  

To demonstrate this theorem we can show that the conditions for a hopf bifurcations are fulfilled. If 𝑋∗ − 𝛽 − 𝛽𝑋∗ −
𝛼𝑋∗ = 0 and the two roots of the characteristic equation 𝜆2 + 𝐴𝜆 + 𝐵 = 0 are purely imaginary namely ±𝑖𝜂.  

where 𝜂2 =
−𝛼𝑉𝛾

(1+𝑋)
+

𝛼𝑋

(1+𝑋)2 +
𝛾𝑉2

𝑋(1+𝑋)
. 

The necessary and sufficient condition for hopf bifurcation to occur is that there exist a 𝛾 = 𝛾∗ such that  

i)𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ = 0 and  

ii)
𝑑(𝑅𝑒𝑎𝑙𝜆)

𝑑𝛾
|𝛾=𝛾∗ ≠ 0 

Henceforth all the conditions for a Hopf bifurcation are fulfilled. This finisheses the confirmation of the theorem. 

 

5.2.3  Theorem: 

If 𝛽 + 𝛼𝛾 < 1 and 𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ < 0 then there exists a stable limit cycle around 𝐸(𝑋∗, 𝑉∗) in the positive 

XV plane. 

Proof:  

Now if we decrease the value of 𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ such that  

𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ < 0 then 𝐸(𝑋∗, 𝑉∗) is locally unstable. Again 

Δ = ∫
Γ

𝑑𝑖𝑣(�̇�, �̇�) 𝑑𝜏 

                                 = ∫
Γ

(𝛼 −
𝑉

(1+𝑋)2 +
𝑋

(1+𝑋)
− 𝛽 −

2𝛾𝑉

𝑋
) 𝑑𝜏 

                                 = ∫
Γ

(
𝛼𝑋

(1+𝑋)
−

𝛾𝑉

𝑋
) 𝑑𝜏 

So, we can reason that Δ > 0 if 𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ < 0. Thus by Poincare criteria any periodic orbit is stable. Thus 

there exists atleast one stable limit cycle around 𝐸(𝑋∗, 𝑉∗) in the positive XV plane. 
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VI. NUMERICAL SIMULATION AND DISCUSSIONS 
 

To check the theoretical outcomes numerical simulations have been completed utilizing MATLAB-2016a. Here we 

have utilized MATLAB routine ODE23. In this numerical simulation we have used distinctive permissible estimations 

of the system parameters to ensure our theoretical results. For the model 1, we have chosen a set of parameter values 

such as 𝛼 = 0.75, 𝛽 = 2, 𝛾 = 0.2 that shows the local as well as global stability which also ensures the theoretical 

results.The equilibrium point corresponding to this set of parameter values of model 1 is (0.7429,0.168037346). 

 

For the model 2, Keeping in mind the feasibility criteria we have chosen the values of 𝛾 by using the following 

conditions, 

 

i)𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ > 0 

ii)𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ = 0 

iii)𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ < 0 

 

For the set of parameter values 𝛼 = 0.7, 𝛽 = 0.1, 𝛾 = 0.35 satisfying the condition 𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ > 0 the 

equilibrium point becomes (1.209914074,1.546939852). The corresponding figure shows locally steady state which 

leads to global stability around the equilibrium point. The corresponding phase portrait for the same set of parameter 

values also ensures the same by figure 3 and 4.  

 

For the set of parameter values 𝛼 = 0.7, 𝛽 = 0.1, 𝛾 = 0.111111111 satisfying the condition 𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ =
0 the equilibrium point becomes (1.124650736,1.487255515) . The corresponding figure shows small amplitude 

oscillation which leads to Hopf bifurcation around the equilibrium point. The corresponding phase portrait of this 

Hopf bifurcation of the system (4) has been represented in the figure 5 and 6 for the same set of parameter values. 

 

For the set of parameter values 𝛼 = 0.7, 𝛽 = 0.1, 𝛾 = 0.07 satisfying the condition 𝑋∗ − 𝛽 − 𝛽𝑋∗ − 𝛼𝑋∗ < 0 the 

equilibrium point is (0.383003659,0.968102561) which locally shows the unstable behavior. It is observed that there 

is a large amplitude oscillation with increasing time for both the plant and whitefly which leads to limit-cycle. The 

corresponding phase portrait of this stable limit- cycle of the system (5) has been shown in the figure 7 and 8. 

In the realistic situation we also observe the same phenomena. 

 

 
Figure  1: Variation of plant-herbivore densities with time in model 1 for 𝜶 = 𝟎. 𝟕𝟓, 𝜷 = 𝟐, 𝜸 = 𝟎. 𝟐 . Here we observe local 

stability for the population with increasing time. 
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Figure  2: Variation of plant-herbivore densities in model 1 𝜶 = 𝟎. 𝟕𝟓, 𝜷 = 𝟐, 𝜸 = 𝟎. 𝟐 .This shows the phase 

portrait in the XV plane which is globally asymptotically stable state of model 1. 
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Figure  3: Locally asymptotically stable state for both the population for the set of parameter values 𝜶 = 𝟎. 𝟕, 𝜷 = 𝟎. 𝟏, 𝜸 =

𝟎. 𝟑𝟓 for model 2. 
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Figure  4: Phase portrait for the plant-herbivore system with the same parameter values 𝜶 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟏, 𝜸 =

𝟎. 𝟑𝟓 which shows global asymptotic stability of model 2. 
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Figure  5: Small amplitude oscillations of both the population for the set of parameter values 𝜶 = 𝟎. 𝟕, 𝜷 = 𝟎. 𝟏, 𝜸 =

𝟎. 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 of model 2. 
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Figure  6: Hopf bifurcation for the parameter values 𝜶 = 𝟎. 𝟕, 𝜷 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 of model 2 

 

 
Figure  7: Large amplitude oscillations of both the population which indicates unstable condition as time increase for the set 

of parameter values 𝜶 = 𝟎. 𝟕, 𝜷 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟕 of model 2. 

 

 
Figure  8: Stable limit-cycle for the parameter values 𝜶 = 𝟎. 𝟕, 𝜷 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟕. 
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VII. CONCLUSION 
 

This investigation is based on the association between Jatropha curcas plant and the vector whitefly. Here a 

comparison of two distinct growth function of the Jatropha curcas plant is represented with random attack pattern of 

the whitefly using poisson distribution. From our study it is explicit that if the plant grows logistically then the effect 

of whitefly cannot destabilize the system but if the plant growth is exponential then it shows three different types of 

behavior depending upon the different parameter values. It shows global stability for some parameter values, hopf 

bifurcation for some other parameter values and stable limit cycle for some another set of parameter values. Our 

mathematical outcomes additionallyl underpins the similar conduct. 
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